Karena RPP membantu kita untuk lebih memahami langkah-langkah pembelajaran nantinya selain itu RPP juga membantu kita untuk lebih tahu arah dan tujuan pembelajaran kita.
Banyak banget para calon guru dan guru yang masih bingung dengan format RPP K13. Aku juga agak masih bingung sih dikit. Kebetulan pas aku cari-cari referensi untuk RPP K13, aku nemuin web yang bisa bantu kalian buat nyusun RPP K13.
Jadi, ini adalah contoh RPP Kurikulum 2013 SMA untuk mata pelajaran matematika.
RENCANA PELAKSANAAN PEMBELAJARAN
(RPP)
Sekolah : SMA Negeri 12 Makassar
Mata pelajaran : Matematika (Peminatan)
Kelas/Semester : XI/ 1
Alokasi Waktu : 2 x 45 menit
A. Kompetensi
Inti
KI
1
|
:
|
Menghayati dan mengamalkan
ajaran agama yang dianutnya
|
KI
2
|
:
|
Menunjukkan perilaku jujur,
disiplin, tanggung jawab, peduli (gotong royong, kerja sama, toleran, damai),
santun, responsive, dan proaktif sebagai bagian dari solusi atas berbagai
permasalahan dalam berinteraksi secara efektif dengan lingkungan social dan
alam serta menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia
|
KI
3
|
:
|
Memahami ,menerapkan, dan
menganalisis pengetahuan faktual, konseptual, prosedural, dan metakognitif
berdasarkan rasa ingintahunya tentang ilmu pengetahuan, teknologi, seni,
budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan
peradaban terkait penyebab fenomena dan kejadian, serta menerapkan
pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat
dan minatnya untuk memecahkan
|
KI
4
|
:
|
Mengolah, menalar, dan
menyaji dalam ranah konkret dan ranah abstrak terkait dengan pengembangan
dari yang dipelajarinya di sekolah secara mandiri, bertindak secara efektif
dan kreatif, serta mampu menggunakan metode keilmuan
|
B. Kompetensi Dasar dan Indikator Pencapaian Kompetensi
Kompetensi
Dasar
|
Indikator
Pencapaian Kompetensi
|
||
KD 3.1
|
Menjelaskan dan menentukan penyelesaian persamaan
trigonometri
|
3.1.1
|
Menurunkan
identitas trigonometri dasar
|
|
|
3.1.2
|
Membuktikan
identitas trigonometri dasar
|
|
|
3.1.3
|
Menjelaskan
pengertian invers Fungsi Trigonometri
|
|
|
3.1.4
|
Menentukan
nilai fungsi invers fungsi trigonomeri
|
|
|
3.1.5
|
Menyelesaikan
persamaan trigonometri dasar
|
|
|
3.1.6
|
Menyelesaikan
persamaan trigonometri sin px = a, cos px = a dan tan px = a
|
|
|
3.1.7
|
Menyelesaikan
persamaan trigonometri linear
|
|
3.1.8
|
Menyelesaikan
persamaan trigonometri dengan memfaktorkan
|
|
3.1.9
|
Menyelesaikan
persamaan trigonometri dengan menggunakan rumus kuadrat
|
||
|
|
3.1.10
|
Menyelesaikan
persamaan trigonometri yang memuat lebih dari satu fungsi trigonometri
|
|
|
3.1.11
|
Menyelesaikan
persamaan trigonometri yang memuat ukuran sudut yang berbeda
|
KD 4.1
|
Memodelkan dan menyelesaikan masalah yang berkaitan dengan
persamaan trigonometri
|
4.1.1
|
Menunjukkan variabel
dari permasalahan yang berkaitan persamaan trigonometri
|
|
|
4.1.2
|
Membuat
model matematika permasalahan yang berkaitan persamaan trigonometri
|
|
|
4.1.3
|
Merumuskan
penyelesaian permasalahan yang berkaitan persamaan trigonometri
|
|
|
4.1.4
|
Merumuskan penyelesaian
permasalahan yang berkaitan persamaan trigonometri
|
|
|
4.1.5
|
Menyelesaikan
permasalahan yang berkaitan persamaan trigonometri
|
|
|
4.1.6
|
Membuat
contoh permasalahan dan penyelesaiannya berkaitan dengan persamaan
trigonometri
|
C.
Tujuan Pembelajaran
Melalui kegiatan pembelajaran menggunakan
model discovery learning yang dipadukan dengan metode mind mapping dan teknik ATM melalui pendekatan saintifik yang
menuntut peserta didik untuk mengamati (membaca) permasalahan, menuliskan
penyelesaian dan mempresentasikan hasilnya di depan kelas, peserta didik dapat menjelaskan
dan menentukan penyelesaian persamaan trigonometri.
Selain itu, peserta didik dapat memodelkan dan menyelesaikan masalah
yang berkaitan dengan persamaan trigonometri,
dengan rasa rasa ingin tahu, tanggung jawab, displin selama proses
pembelajaran, bersikap jujur, santun, percaya diri dan pantang menyerah, serta
memiliki sikap responsif
(berpikir kritis) dan pro-aktif (kreatif), serta mampu berkomukasi dan
bekerjasama dengan baik.
D. Materi
o Identitas Trigonometri
o Persamaan Trigonmetri
o Masalah yang Berkaitan
Persamaan Trigonometri
E.
Metode Pembelajaran
Pendekatan : Saintifik
Metode : Mind mapping, teknik
ATM (Amati, Tiru dan Modifikasi), diskusi kelompok, tanya jawab, penugasan
Model : Discovery
learning
Pertemuan 15 :
Tes Praktik (Penilaian Terlampir)
Sintaks
|
Waktu
|
KEGIATAN PENDAHULUAN
1.
Memberi salam, dan berdoa’ sebelum belajar;
2. Mengkondisikan suasana
belajar yang menyenangkan;
3. Membahas PR;
4. Menyampaikan kompetensi yang
harus dicapai dalam tes praktik,
dan manfaatnya
dalam kehidupan sehari-hari berkaitan dengan persamaan trigonometri
5. Menyampaikan teknik penilaian
yang akan digunakan di evaluasi akhir keterampilan tentang persamaan
trigonometri
|
10’
|
KEGIATAN INTI
Stimulation (Memberi Stimulus)
Melakukan tes praktik berkaitan dengan materi yang telah dipelajari yaitu
tentang persamaan trigonometri
|
70’
|
KEGIATAN PENUTUP
1.
Bersama dengan guru
membahas pedoman
penilaian tes praktik, untuk melihat ketercapaian kompetensi berdasarkan
materi yang telah dipelajari.
2.
Memberikan
tugas portofolio kepada peserta didik, dan mengingatkan peserta didik untuk belajar kembali
terutama bagi yang harus mengikuti pembelajaran remedial.
3.
Memberi salam.
|
10’
|
G. Penilaian
1.
Teknik Penilaian:
a)
Penilaian Sikap : Observasi/pengamatan
b)
Penilaian Pengetahuan :
Tes Tertulis
c)
Penilaian Keterampilan :
Unjuk Kerja/ Praktik dan Proyek
2.
Bentuk
Penilaian :
1.
Observasi : lembar
pengamatan aktivitas peserta didik
2.
Tes tertulis : uraian dan lembar kerja
3.
Unjuk kerja : lembar penilaian presentasi
4.
Proyek : lembar tugas proyek dan pedoman penilaian
3.
Instrumen Penilaian (terlampir)
4.
Remedial
-
Pembelajaran
remedial dilakukan bagi siswa yang capaian KD nya belum tuntas
-
Tahapan
pembelajaran remedial dilaksanakan melalui remidial teaching (klasikal), atau tutor sebaya, atau tugas dan diakhiri
dengan tes.
-
Tes
remedial, dilakukan sebanyak 3 kali dan apabila setelah 3 kali ters remedial
belum mencapai ketuntasan, maka remedial dilakukan dalam bentuk tugas tanpa tes
tertulis kembali.
5. Pengayaan
-
Bagi
siswa yang sudah mencapai nilai ketuntasan diberikan pembelajaran pengayaan
sebagai berikut:
Ø
Siwa
yang mencapai nilai
diberikan
materi masih dalam cakupan KD dengan pendalaman sebagai pengetahuan tambahan
Ø
Siwa
yang mencapai nilai
diberikan
materi melebihi cakupan KD dengan pendalaman sebagai pengetahuan tambahan.
H. Media/Alat
dan Sumber Belajar
1.
Media/Alat :
Lembar
Kerja, Penggaris, Papan Tulis/White Board, LCD
2.
Sumber Belajar :
a. Buku Matematika (Peminatan) Kelas XI, Karangan: Sukino, Penerbit
Erlangga Tahun 2017
b. Buku Matematika (Peminatan) Kelas XI, Karangan: Marthen Kanginan, Penerbit Yrama
Widya Tahun 2017
c. Buku
Trigonometry, Karangan: Cynthia Young. Penerbit Johan Wiley & Sons Tahun
2012
d. Buku Algbera
2 And Trigonometry, Karangan: Ann Xavier Gantert. Penerbit AMSCO Tahun 2009
e. Internet.
Makassar, 16 Juli 2018
Mengetahui
Kepala
SMA Negeri 12 Makassar, Guru
Mata Pelajaran,
Mashari, S.Pd.,M.Si. Muhammad
Arif,S.Pd., M.Pd.
NIP. 196702221992032014 NIP. 198105162004111001
INSTRUMEN PENILAIAN SIKAP
Nama
Satuan pendidikan : SMA Negeri
12 Makassar
Tahun
pelajaran : 2018/2019
Kelas/Semester : XI / Semester I
Mata Pelajaran :
Matematika (Peminatan)
No
|
Waktu
|
Nama
|
Kejadian/
Perilaku
|
Butir Sikap
|
Pos/
Neg
|
Tindak Lanjut
|
1
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
4
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
INSTRUMEN TES TERTULIS
Satuan
Pendidikan : SMA Negeri 12 Makassar
Mata
Pelajaran : Matematika
(Peminatan)
Kelas/
Semester : XI/ 1
Kompetensi
Dasar : 3.1 Menjelaskan dan
menentukan penyelesaian persamaan trigonometri.
IPK :
1.1.6
Menyelesaikan persamaan trigonometri sin px = a,
cos px = a dan tan px = a
1.1.7
Menyelesaikan persamaan trigonometri linear
1.1.8
Menyelesaikan persamaan trigonometri dengan
memfaktorkan
3.1.10 Menyelesaikan persamaan trigonometri yang memuat
lebih dari satu fungsi trigonometri
Materi
Pokok : Persamaan
trigonometri
Rubrik Penilaian
Nama siswa/kelompok :
…………………………………………………
Kelas : ………………………………………………….
No
|
Kategori
|
Skor
|
Alasan
|
1.
|
3. Apakah terdapat uraian tentang prosedur penyelesaian yang dikerjakan?
|
|
|
2.
|
Apakah
gambar dibuat dengan tepat dan sesuai dengan konsep?
|
|
|
3.
|
Apakah bahasa yang digunakan untuk menginterpretasikan lugas, sederhana, runtut dan sesuai
dengan kaidah EYD?
|
|
|
4.
|
Apakah
penyelesaian yang dikerjakan sesuai dengan konsep yang telah dipelajari?
|
|
|
5.
|
Apakah
dibuat kesimpulan?
|
|
|
Jumlah
|
|
|
Semoga bermanfaat dan bisa membantu kalian dalam menyusun RPP ya.
Tidak ada komentar:
Posting Komentar